ONLINE MUTATION REPORT Unconventional intronic splice site mutation in SCN5A associates with cardiac sodium channelopathy
نویسندگان
چکیده
Background: Mutations in the cardiac sodium channel, SCN5A, have been associated with one type of long-QT syndrome, with isolated cardiac conduction defects and Brugada syndrome. The sodium channelopathies exhibit marked variation in clinical phenotypes. The mechanisms underlying the phenotypical diversity, however, remain unknown. Exonic SCN5A mutations can be detected in 20% of Brugada syndrome patients. Results: An intronic mutation (c.4810+3_4810+6dupGGGT) in the SCN5A gene, located outside the consensus splice site, was detected in this study in a family with a highly variable clinical phenotype of Brugada syndrome and/or conduction disease and in a patient with Brugada syndrome. The mutation was not found in a control panel of 100 (200 alleles) ethnically matched normal control subjects. We provide in vivo and in vitro evidence that the mutation can disrupt the splice donor site, activate a cryptic splice site, and create a novel splice site. Notably, our data show that normal transcripts can be also derived from the mutant allele. Conclusions: This is the first report of an unconventional intronic splice site mutation in the SCN5A gene leading to cardiac sodium channelopathy. We speculate that its phenotypical diversity might be determined by the ratio of normal/abnormal transcripts derived from the mutant allele.
منابع مشابه
Unconventional intronic splice site mutation in SCN5A associates with cardiac sodium channelopathy.
BACKGROUND Mutations in the cardiac sodium channel, SCN5A, have been associated with one type of long-QT syndrome, with isolated cardiac conduction defects and Brugada syndrome. The sodium channelopathies exhibit marked variation in clinical phenotypes. The mechanisms underlying the phenotypical diversity, however, remain unknown. Exonic SCN5A mutations can be detected in 20% of Brugada syndrom...
متن کاملThe Relationship Between Gastric Myoelectric Activity and SCN5A Mutation Suggesting Sodium Channelopathy in Patients With Brugada Syndrome and Functional Dyspepsia - A Pilot Study
BACKGROUND/AIMS SCN5A encodes the cardiac-specific Na(V)1.5 sodium channel, and Brugada syndrome is a cardiac conduction disorder associated with sodium channel α-subunit (SCN5A) mutation. The SCN5A-encoded Na(V)1.5 channel is also found on gastrointestinal smooth muscle and interstitial cells of Cajal. We investigated the relationship between functional dyspepsia (FD) and SCN5A mutation to eva...
متن کاملGenetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias.
SCN5A encodes the α subunit of the major cardiac sodium channel Na(V)1.5. Mutations in SCN5A are associated with conduction disease and ventricular fibrillation (VF); however, the mechanisms that link loss of sodium channel function to arrhythmic instability remain unresolved. Here, we generated a large-animal model of a human cardiac sodium channelopathy in pigs, which have cardiac structure a...
متن کاملNew SCN5A mutation in a SUDEP victim with idiopathic epilepsy
Many idiopathic epilepsies have been shown to be caused by ion channel dysfunction. Channelopathies also cause the long QT syndrome (LQTS) which is associated with syncopes and sudden cardiac death. It has been postulated that the same channelopathy may be associated with both epilepsy and LQTS. We report a patient with idiopathic epilepsy who died in sudden unexpected death in epilepsy (SUDEP)...
متن کاملMutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome.
BACKGROUND Congenital long-QT syndrome (LQTS) is a primary arrhythmogenic syndrome stemming from perturbed cardiac repolarization. LQTS, which affects approximately 1 in 3000 persons, is 1 of the most common causes of autopsy-negative sudden death in the young. Since the sentinel discovery of cardiac channel gene mutations in LQTS in 1995, hundreds of mutations in 8 LQTS susceptibility genes ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005